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1. Introduction 
 

The dynamics of solitons in nonlinear directional 

couplers (NLDC) has been studied for the past few years 

in the context of nonlinear optical fibers [1-30]. There are 

several forms of results that are being produced and they 

are mostly numerical simulations However, what is not 

visible is the analytical aspect of NLDC. Analytical results 

are truly missing from this literature. Therefore, it is 

important to address this aspect so that the gap can be 

filled in. 

This paper addresses the analytical aspects of optical 

solitons in multiple-core optical couplers where coupling 

is with nearest neighbors as well as with all neighbors. 

Bright, dark and singular optical soliton solutions will be 

retrieved along with several necessary constraint 

conditions on the soliton parameters. There are five forms 

of nonlinear media that will be studied in this context. 

They are Kerr law, power law, parabolic law, dual-power 

law and log law. The results will be extremely helpful in 

the study of optical routing as well as switching and other 

studies. The detailed study will now be conducted in the 

following two sections. 

 

 
2. Coupling with nearest neighbors 

 

The governing equation for multiple-core couplers is 

given by [1, 9, 10, 30] 
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where Nl 1 . Equation (1) represents the general model 

for optical couplers where coupling with nearest neighbors 

is considered. In (1), a is the coefficient of group velocity 

dispersion (GVD) and b is the coefficient of nonlinearity. 

The functional F represents non-Kerr law nonlinear media 

that will be studied in details in the next five subsections. 

On the right hand side, K represents coupling coefficient. 

It must be noted that the general case of optical couplers 

with the inclusion of spatio-temporal dispersion is already 

studied earlier [30]. This paper however considers only 

GVD.  

 In order to address this model for the five forms of 

nonlinear media, the initial hypothesis is taken to be 
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where the amplitude component of soliton is Pl(x, t) while 

the phase component is defined as 
 

 

 txtx ),(                               (3) 
 

Here, κ is the soliton frequency, while ω is the wave 

number and θ is the phase constant. After substituting 

hypothesis (2) into (1) while utilizing (3), the resulting 

expression is split into real and imaginary components. 

The imaginary part gives the speed of the soliton as 
 

  av 2                                          (4) 
 

The speed of the soliton stays the same for any kind of 

nonlinearity as well as for all types of nonlinear media and 

all kinds of solitons. Next, the real part implies 
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It is this real part equation that will be further analyzed in 

the next five subsections based on the types of nonlinearity 

and types of solitons. 
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2.1. Kerr law nonlinearity 

 

For Kerr law, governing equation (1) modifies to [9, 

27-30] 
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Substituting hypothesis (2) into equation (6) reduces it 

to 
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For Kerr law nonlinearity, the study will be further 

split into the following three subsections, depending on the 

type of soliton. These are bright, dark and singular 

solitons. 

 

2.1.1 Bright solitons 

 

For bright solitons, starting hypothesis for Kerr law is 

[9, 27-30] 
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Here, B represents the inverse width of the soliton. 

Substituting (8) into (7) leads to 
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after simplification. Balancing principle implies 
 

  1p                                      (11) 
 

Setting the coefficients of linearly independent functions 

to zero gives 
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which naturally poses the constraint 
 

  0ab                                      (14) 

 

This shows that GVD and nonlinearity must bear the 

same sign for bright solitons to exist. Hence, the 1-soliton 

solution to the NLSE in multiple-core couplers with Kerr 

law nonlinearity is 
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where the amplitude-width relation is given by (13), while 

the wave number is in (12). 

 

2.1.2 Dark solitons 

 

For dark solitons, the starting hypothesis is [27-30] 
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with unknown exponent p. Here Al and B are free 

parameters. Substituting this hypothesis into (7) leads to 
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By balancing principle, same value of p as in (11) is 

revealed. Also, this same value of p is obtained from 

coefficient of the standalone linearly independent 

function τp 2tanh  . From other linearly independent 

functions, 
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which implies the natural constraint 
 

            0ab   (20) 
 

Thus for dark solitons to exist, GVD and nonlinearity 

must carry opposite signs. Therefore, dark 1-soliton 

solution to the NLSE in multiple-core couplers with Kerr 

law nonlinearity is 
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with the respective parameters as defined. 
 

2.1.3 Singular solitons 

 

Here, one starts with the hypothesis [27-30]  
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For singular solitons, Al and B are also referred to as 

free parameters. Upon substituting this hypothesis into (7), 
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Balancing principle again leads to the same value of p 

as given by (11). The linearly independent functions yield 

the wave number as in (12) while the connection between 
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the free parameters is the same as (19) along with its 

constraint (20). Finally, singular 1-soliton solution to 

NLSE in NLDC with Kerr law is 
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2.2 Power law nonlinearity 

 

For power law, the coupled NLSE modifies to [27-30] 
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Here n is the power law nonlinearity parameters. For 

solitons to exist, it is necessary to have 0 < n < 2. In 

particular 2n , in order to avoid self-focusing 

singularity. With hypothesis given by (2), equation (25) 

reduces to 
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The study, for power law nonlinearity, will now be 

split into the following three subsections based on the 

same three types of solitons as in Kerr law. 

 

2.2.1. Bright solitons 

 

For bright solitons, starting hypothesis with power 

law nonlinearity is same as given by (8). Substituting (8) 

into (26) leads to [1, 9, 27-30] 
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Balancing principle yields 
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Next, setting the coefficients of linearly independent 

functions to zero leads to 
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which naturally poses the constraint given by (14). Hence, 

finally, bright 1-soliton solution to the NLSE in multiple-

core couplers with power law nonlinearity is 
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2.2.2. Dark solitons 

 

For dark solitons, starting hypothesis stays the same 

as (16), so that the real part equation (26), simplifies to 
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By balancing principle (28) is revealed. Also, this 

same value of p as given by (11) is obtained from 

coefficient of the standalone linearly independent function 

τp 2tanh  . Thus, (11) and (28) together imply that for dark 

soliton solutions to exist, power law nonlinearity must 

collapse to Kerr law nonlinearity. This implies that all 

results of dark solitons for Kerr law nonlinearity, from 

previous subsection, will remain valid for power law 

nonlinearity. 

 

2.2.3. Singular solitons 

 

Here, the hypothesis given by (22) will work. 

Therefore real part equation, based on (22), leads to  
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Balancing principle leads to the same value of p as 

given by (28). Also, the wave number is the same as in 

bright solitons as given by (29), while the relation between 

the free parameters is 
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that naturally implies (20). Hence, finally singular 1-

soliton solution to the NLSE in multiple-core couplers 

with Kerr law nonlinearity is 
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2.3 Parabolic law nonlinearity 

 

In this case, the governing equation reduces to [1, 9, 

27-30] 
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where Nl 1 , while bj for j = 1, 2 are constants. The 

real part equation therefore is 
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Equation (37) will now be analyzed for bright and 

singular solitons only. Dark solitons for multiple-core 

couplers with parabolic law nonlinearity cannot be 

retrieved by this ansatz method. 

 

2.3.1. Bright solitons 

 

For parabolic law nonlinearity, the hypothesis for the 

waveform is [9]  
 

         
  lp

l
l

τD

A
txP

cosh
),(


      (38) 

for some unknown exponent p and D is a newly introduced 

parameter. Here Al and B represent, as usual, the soliton 

amplitude and inverse width. Substituting (38) into (37), 

the real part equation modifies to 
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Balancing principle gives 
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From the linearly independent functions, 
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which shows that 
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Therefore, for parabolic law nonlinearity, bright 1-soliton 

solution for optical couplers is given by 
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2.3.2. Singular solitons 

 

For singular solitons, the waveform is assumed to be 

of the form [27, 28] 
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Here Al and B once again represent free parameters. 

Substituting into (37), the real part equation simplifies to 
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Balancing principle yields (40). From linearly 

independent functions, wave number and the free 

parameter B are given as in (41), (43) along with (44). 

However, 
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which will make sense for 
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Therefore, for parabolic law nonlinearity, singular 1-

soliton solution for optical couplers is given by 
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2.4 Dual-Power law nonlinearity 

 

In this case, the governing equation reduces to [9] 
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where Nl 1  and the exponent n represents the dual 

power law nonlinearity parameter. The real part equation 

therefore is  
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Equation (52) will now be analyzed for bright and 

singular solitons. It needs to be noted that, just as in 

parabolic law nonlinearity, dark solitons for multiple-core 

couplers with parabolic law nonlinearity cannot be 

retrieved by the aid of this integration scheme. 
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2.4.1. Bright solitons 

 

For parabolic law nonlinearity, the hypothesis for the 

waveform is given by (38). Substituting into (52), the real 

part equation is 
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Balancing principle yields 
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The special case, when n = 1, the result collapses to 

parabolic law nonlinearity. From the linearly independent 

functions, 
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which will exist when (44) holds. Therefore, for dual-

power law nonlinearity, bright 1-soliton solution for 

optical couplers is given by 
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2.4.2. Singular solitons 

 

 For singular solitons, the waveform is given by (46). 

Substituting into (52), the real part equation transforms to 
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Balancing principle yields (54). From the linearly 

independent functions, wave number and the free 

parameter B are given as in (55) and (57) along with (44). 

However, 
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which will make sense for 
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Therefore, for dual-power law nonlinearity, singular 

1-soliton solution in NLDC is given by 
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2.5 Log-law nonlinearity 

 

 For log law nonlinear medium, NLSE for multiple-core 

couplers is given by [1, 10, 27-30] 
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It is only Gaussons that can be retrieved for this model 

[10, 30]. In this case, the real part equation (5) changes to 
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The starting hypothesis for Gaussons is [10, 30] 
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Substituting this hypothesis into (64) simplifies it to 
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Setting the coefficients of the linearly independent 

functions
j , for j = 0, 2 leads to the width of Gaussons 

being 
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which indicates the same constraint condition as in (14), 

for Gaussons to exist. Also, the wave number of Gaussons 

from linearly independent functions falls out to 
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Hence, finally optical Gausson solution to multiple-

core couplers with log-law nonlinearity is 
 

     
)()()( 22

),(  txivtxB

l

l eeA  txq                 (69) 

 

 

3. Coupling with all neighbors 
 

 The governing equation for multiple-core couplers is 

given by [1, 30] 
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where Nl 1 . Here 
lm

  represents the coupling 

coefficients with all neighbors, except with itself. The 

starting hypothesis for the solution is the same as in (2) 

with the definition of the phase component as given by (3). 

Substituting (2) into (70) leads to the speed of the soliton 

given by (4), from the imaginary part. The real part, 

however, reduces to: 
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 It is this real part equation that will be further analyzed 

in the next five subsections based on the types of 

nonlinearity and types of solitons. 

 

3.1  Kerr law nonlinearity 

 

For Kerr law, the coupled NLSE modifies to 
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For hypothesis given by (8), equation (71) reduces to 
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Equation (73) will now be analyzed in the following 

three subsections for the types of solitons. 

 

3.1.1. Bright solitons 

 

For bright solitons, starting hypothesis for Kerr law is 

given by (8). Substituting this hypothesis into (73) gives 
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Balancing principle yields (11). Next, setting the 

coefficients of linearly independent functions to zero leads 

to the wave number of the solitons as 
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while the amplitude-width relation is given by (13) along 

with the constraint (14). Hence, finally the 1-soliton 

solution to the NLSE in multiple-core couplers with Kerr 

law nonlinearity is given as in (15). 

 

3.1.2 Dark solitons 

 

For dark solitons, the starting hypothesis is (16). 

Substituting into the real part equation (73) leads to 
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By balancing principle (11) is revealed. Also, this 

same value of p is recovered from coefficient of the 

standalone linearly independent function τp 2tanh  . From 

other linearly independent functions, 
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The remaining relations as given by (19)-(21) are also 

valid in this case. 

 

3.1.3. Singular solitons 

 

Once again, for singular solitons, the starting 

hypothesis stays the same as (22). Therefore the real part 

equation simplifies to 

 

   
0cschcsch)1(

cschcsch)(

,1

22

33222







 τAτppBaA

τbAτBapaA

p
N

lmm
mlm

p

l

p

l

p

l

  

 (78) 

 

Balancing principle again leads to the same value of p 

as in (11). Then, other linearly independent functions give 

(75), (19) and (20). Finally, singular 1-soliton solution is 

(24). 

 

3.2. Power law nonlinearity 

 

For power law, the coupled NLSE modifies to 
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Here n is the power law nonlinearity parameters and 

all limitations on the parameter n, as discussed earlier, 

remain valid here as well. With hypothesis (2), equation 

(79) simplifies to 
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For power law nonlinearity, the study will be further 

split into the following three subsections, depending on the 

type of soliton that is being considered. 

 

3.2.1. Bright solitons 

 

For bright solitons, starting hypothesis for power law 

is again given by (8). Therefore the real part equation (80) 

simplifies to 
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Balancing principle yields the same value of the 

unknown exponent p as in (28). The linearly independent 

coefficients give 
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The amplitude-width relation is still given by (30) 

with its corresponding constraint. 

 

3.2.2. Dark solitons 

 

For dark solitons, starting hypothesis is the same as 

given by (16). Substituting into (80) leads to 
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By balancing principle (28) is revealed. Also, this 

same value of p as given by (11) is obtained from 

coefficient of the standalone linearly independent 

function τp 2tanh  . Thus, (11) and (28) together imply that 

for dark soliton solutions to exist, power law nonlinearity 

must collapse to Kerr law nonlinearity. This implies that 

all results of dark solitons for Kerr law nonlinearity will 

remain valid for power law nonlinearity. 

 

3.2.3. Singular solitons 

 

Here, the starting hypothesis is given by (22) so that 

the real part equation reduces to 
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Balancing principle leads to the same value of p as 

given by (28). Also the wave number is the same as in 

bright solitons as given by (82), while the relation between 

the free parameters is (19) along with (20). Finally, the 

singular 1-soliton solution is given by (24). 

 

3. 3. Parabolic law nonlinearity 

 

In this case, the governing equation is 
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where Nl 1 . The real part equation therefore is  
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Equation (86) will now be analyzed for bright and 

singular solitons. Once again, dark solitons for multiple-

core couplers with parabolic law nonlinearity cannot be 

retrieved by this ansatz method. 

 

3.3.1. Bright solitons 

 

For parabolic law nonlinearity, the hypothesis for the 

waveform is the same as (38). The real part equation, now, 

simplifies to 
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Balancing principle yields (40). From linearly 

independent functions, 
 

          

]4)4([
4

1

,1

22




N

lmm
mlml

l

ABaA
A

 (88) 

 

Subsequently, relations (42)-(45) holds.

  

 

3.3.2. Singular solitons 

 

 For singular solitons, the waveform is given by (46). 

Thus, the real part equation transforms to 
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The wave number is given by (88). After this, rest 

stays the same as in the case of singular soliton in 

multiple-core couplers, where coupling is with nearest 

neighbors. 

 

 

3.4. Dual-Power law nonlinearity 

 

In this case, the governing equation is 
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where Nl 1  . The real part equation therefore is  
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Equation (91) will now be analyzed for bright and 

singular solitons. To repeat, dark solitons for multiple-core 

couplers with dual-power law nonlinearity cannot be 

retrieved by this ansatz method. 

 

3.4.1. Bright solitons 

 

For parabolic law nonlinearity, the hypothesis for the 

waveform is given by (38). Substituting into (90), the real 

part equation is 
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Balancing principle yields the same value of the 

exponent p given by (54). Next, linearly independent 

functions yield 
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as well as relations (56)-(58) along with (44). 

      

3.4.2. Singular solitons 

 

 For singular solitons, the waveform is given by (46). 

Substituting into (91), the real part equation transforms to 
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The wave number is given by (93), while the 

remaining relations are same as in singular solitons for 

coupling with nearest neighbors. 

 

3.5 Log-law nonlinearity 

 

For log law nonlinear media, NLSE for NLDC in 

multiple core couplers is [30] 
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It is only Gaussons that can be retrieved for this 

model. In this case, the real part equation (71) simplifies to 
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The starting hypothesis for Gaussons is still given by 

(65). Substituting this hypothesis into (96) simplifies it to 
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Setting the coefficients of the linearly independent 

functions 
j , for j = 0, 2 leads to wave number of 

Gaussons 
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The width of Gausson stays the same as in (67) along 

with the constraint (14). Finally, the Gaussons are given 

by (69). 

 
 
4. Conclusions 

 

 This paper extracted exact 1-soliton solution to the 

governing equation for optical couplers. The coupling was 

considered with nearest neighbors as well as all neighbors. 

There are three types of soliton solutions obtained. They 

are bright, dark and singular solitons. The constraint 

conditions, for the existence of these solitons, naturally 

emerged from the structure of soliton solutions of the 

governing equations. There are five types of nonlinear 

media that are considered. They are Kerr law, power law, 

parabolic law, dual-power law and log law. All results, for 
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each nonlinearity, are exhibited in this paper with 

appropriate technical details. 

 These results will be immensely helpful in optical 

switching and networking in order to address all-optical 

switching. In future, there is a lot of scope to extend these 

results. The perturbation terms will be added and the exact 

soliton solutions, in optical couplers, with perturbation 

terms will be derived later and will be reported elsewhere. 

Additionally, conservation laws will be derived for such 

equations and they will also be available. 
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